The tomato homolog of CORONATINE-INSENSITIVE1 is required for the maternal control of seed maturation, jasmonate-signaled defense responses, and glandular trichome development.
نویسندگان
چکیده
Jasmonic acid (JA) is a fatty acid-derived signaling molecule that regulates a broad range of plant defense responses against herbivores and some microbial pathogens. Molecular genetic studies in Arabidopsis have established that JA also performs a critical role in anther and pollen development but is not essential for other developmental aspects of the plant's life cycle. Here, we describe the phenotypic and molecular characterization of a sterile mutant of tomato (jasmonic acid-insensitive1 [jai1]) that is defective in JA signaling. Although the mutant exhibited reduced pollen viability, sterility was caused by a defect in the maternal control of seed maturation, which was associated with the loss of accumulation of JA-regulated proteinase inhibitor proteins in reproductive tissues. jai1 plants exhibited several defense-related phenotypes, including the inability to express JA-responsive genes, severely compromised resistance to two-spotted spider mites, and abnormal development of glandular trichomes. We demonstrate that these defects are caused by the loss of function of the tomato homolog of CORONATINE-INSENSITIVE1 (COI1), an F-box protein that is required for JA-signaled processes in Arabidopsis. These findings indicate that the JA/COI1 signaling pathway regulates distinct developmental processes in different plants and suggest a role for JA in the promotion of glandular trichome-based defenses.
منابع مشابه
The wound response mutant suppressor of prosystemin-mediated responses6 (spr6) is a weak allele of the tomato homolog of CORONATINE-INSENSITIVE1 (COI1).
The systemic defense response of tomato plant in response to insect attack and wounding is regulated by the 18 amino acid peptide systemin and the phytohormone jasmonic acid (JA). Recent genetic analyses based mainly on spr (suppressors of prosystemin-mediated responses) mutant screens have led to the hypothesis that systemin acts at, or near, the site of wounding to amplify the production of J...
متن کاملJasmonate and phytochrome A signaling in Arabidopsis wound and shade responses are integrated through JAZ1 stability.
Jasmonate (JA) activates plant defense, promotes pollen maturation, and suppresses plant growth. An emerging theme in JA biology is its involvement in light responses; here, we examine the interdependence of the JA- and light-signaling pathways in Arabidopsis thaliana. We demonstrate that mutants deficient in JA biosynthesis and signaling are deficient in a subset of high irradiance responses i...
متن کاملThe Arabidopsis F-box protein CORONATINE INSENSITIVE1 is stabilized by SCFCOI1 and degraded via the 26S proteasome pathway.
Jasmonate regulates critical aspects of plant development and defense. The F-box protein CORONATINE INSENSITIVE1 (COI1) functions as a jasmonate receptor and forms Skp1/Cullin1/F-box protein COI1 (SCF(COI1)) complexes with Arabidopsis thaliana Cullin1 and Arabidopsis Skp1-like1 (ASK1) to recruit its substrate jasmonate ZIM-domain proteins for ubiquitination and degradation. Here, we reveal a me...
متن کاملJasmonic acid and its precursor 12-oxophytodienoic acid control different aspects of constitutive and induced herbivore defenses in tomato.
The jasmonate family of growth regulators includes the isoleucine (Ile) conjugate of jasmonic acid (JA-Ile) and its biosynthetic precursor 12-oxophytodienoic acid (OPDA) as signaling molecules. To assess the relative contribution of JA/JA-Ile and OPDA to insect resistance in tomato (Solanum lycopersicum), we silenced the expression of OPDA reductase3 (OPR3) by RNA interference (RNAi). Consisten...
متن کاملHerbivory in the previous generation primes plants for enhanced insect resistance.
Inducible defenses, which provide enhanced resistance after initial attack, are nearly universal in plants. This defense signaling cascade is mediated by the synthesis, movement, and perception of jasmonic acid and related plant metabolites. To characterize the long-term persistence of plant immunity, we challenged Arabidopsis (Arabidopsis thaliana) and tomato (Solanum lycopersicum) with caterp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Plant cell
دوره 16 1 شماره
صفحات -
تاریخ انتشار 2004